

NESDIS Data System Readiness

Mitch Goldberg
NESDIS/ORA/CRAD
February 14, 2002

Near-real-time distribution of AIRS for NWP data assimilation

Goals:

- Provide AIRS/AMSU/HSB data and products to NWP centers in near-real-time -- generally 3 hours from observation time.
- Demonstrate positive impact in NWP.
- Demonstrate processing and utilization of high spectral resolution infrared data in preparation for CrIS and IASI.

Why NESDIS?

- NASA processing does not meet NWP time requirements.
- NESDIS has well established customer relationships with NWP centers.
- Science team status natural partners with NASA and JPL
- Science investigations are facilitated with full accessibility to AIRS data.

Science Investigations

- Data compression.
- Validate and improve radiative transfer calculations.
- Cloud detection and clearing.
- Channel selection (super channels).
- Validate and improve retrieval algorithms.
- Use MODIS to improve AIRS cloud detection
- Forecast impact studies
- Radiance vs retrieval assimilation trade-off studies
- Trace gas
- Surface emissivity

NWP Users

- NCEP
- ECMWF
- Met. Office
- Meteo-France
- Goddard DAO
- Meteor. Service of Canada
- Bureau of Meteorology Research Centre (Australia)

AIRS near real-time processing

- EOS data is received at Goddard
- NESDIS computers are located at Goddard
- Products are stored on a server at Goddard
- Users gets the data via FTP.

Real Time Data Acquisition

- Downlink Stations -- Fairbanks, Alaska and Svalbard, Norway
- EOSDIS -- Goddard Space Flight Center
- Data Processing Machine
- 1 to 2.5 hours for the data to be received at the processing machine

Real Time Data Processing

- Raw Data Packets (Rate Buffered Data)
- Convert Packets to Level 0 format (< 5 minutes)
- Level 0 to Level 1B -- JPL Code Approximately 20 minutes.
- Level 1B to deliverable products (< 5 minutes).

NOAA EOS Processing System

- Current -
- 32 CPU SGI Origin 2000 R10K
 - » 20 CPUs for AIRS
 - » 12 CPUs for MODIS
- 720 GB RAID
- O2 Control Console

Hardware Upgrade

- NASA NPP project has provided to NOAA 96 CPUs (SGI ORIGIN 3800 RS12K) for MODIS and AIRS processing.
 (64 MODIS ,32 for AIRS) 8 TB storage
- Server SGI Origin 3200 dual processor 6 TB
- 20 RS10K + 32 RS12K CPUs dedicated to AIRS
- At least 7 TB for AIRS

NWP AIRS Products

- Thinned Radiance files BUFR and HDF
 - a) center of 3 x 3 from every other AMSU fov, ~300 channels. + AMSU and HSB (8 mbytes per orbit)
 - b) 200 principal component scores using same thinning as a)
 - c) Every 2nd 3 x 3 AIRS fovs (~300 channels) plus all AMSU and HSB (all 3 x 3)
 - d) cloud cleared a) and b)
 - e) Full resolution AMSU and HSB
 - * all include cloud indicator
- Full resolution level 2 products temperature, moisture and ozone.

Deliverable AIRS BUFR Files

- Originally based off TOVS BUFR Format
- One BUFR file per granule
- Center Field of View for every other golf ball
- 281 AIRS Infrared Channels, 4 AIRS Visible Channels, 20 Cloud Tests, 1 Cloud Flag, 15 AMSU Channels, and 4 HSB Channels
- Each file is approximately 520 KB

Preparing for AIRS

- Simulating AIRS/AMSU-A/HSB data in real-time from the NCEP 6-hour forecast since April 2000.
- Deriving NRT level 2 retrievals since June 2001.
- All products generated in near real-time and stored on FTP server.
- Providing AIRS OPTRAN forward model to NCEP
- Developed clear fov tests.
- Developed offline system to validate AIRS radiances, products and to generate retrieval coefficients and radiance bias adjustments.

Example of simulated AIRS window channels: LW, SW

Simulated AMSU

Real AMSU

Offline system for monitoring/validation

- Daily Global Grids (0.5 x 2.0 resolution) of observed radiances (center fov) cloud cleared radiances principal component scores of above retrievals from level 2 support file NCEP and ECWMF forecasts clear simulated radiances from NCEP and ECMWF
- Radiosonde collocations

Key to validation of NRT products as well as generation of coefficients.

Clear detection

ONLY 0.5% residual clouds

Dec. 14 2000, totald

Offline monitoring of coefficients

Monitor

- Monitor representation of eigenvectors
- Monitor representation of regression coefficients

965 cm-1 reconstruction

- Generate eigenvectors -- examine information content
- Look at clear detection
- Generate retrieval coefficients using collocate PCS and ECMWF
- Compare regression retrievals with ECWMF (sanity check)
- Look at measured computed

Walter Readiness

Required Tasks

- Convert RBD Data to PDS format
- Convert GBAD PDS to DAAC Level-1 code
- Set up the input PCF files for the Level-0 processing
- Run the Level-0 to Level-1B code
- Subset the Level-1B radiances/BTs and produce the deliverable BUFR files

MOSS 6 Test

- Received 56 Files of Rate Buffered Data for each Instrument
- The latency time for NOAA to get the RBD data is being investigated

- Conversion of Rate Buffered Instrument Data to PDS (Production Data Set) Format
- Conversion of Rate Buffered GBAD 1 Second data to PDS Format
- Conversion of PDS GBAD data to DAAC Level 1 Format
- Updated version of GBAD conversion code needs to be downloaded and installed

AIRS Level 0 to Level 1B

- Currently in the process of installing the code
- Need to automate PCF file generation
- Need to automate the Level 0 to Level
 1B production

Deliverable BUFR Files

- The data subsetter and BUFR converter is in production - Operational Version
- 281 Channel set is being produced for the center FOV of every other golf ball
- Data missing from BUFR files: Visible, cloud tests, and quality flags

Level 1B Matchups

- The Level 1B Matchups are in Operations.
- Closest AIRS point to a given location within the time and distance requirements
- Quality Flags need to be added to the matchup file

Summary

- All the pieces are in place
- Pieces need to be put together to make an Operational System